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Abstract. The surface of the Eden model is investigated numerically by finite-size scaling, 
using a strip geometry. Three different versions are studied and it shows that the one 
mostly used previously exhibits strong finite-size corrections. In two dimensions it is found 
that the surface thickness simply grows as the square root of the width of the strip for 
infinitely long strips. This result, as well as the results in d = 3 and d = 4, suggest that the 
surface of the Eden shares some properties with the equilibrium models used to describe 
the roughening transition. Moreover i t  is found that the surface thickness scales differently 
with the height of the cluster for infinitely large strips. 

Among the theoretical models which have been introduced to describe cluster growth 
and aggregation phenomena, the Eden model (Eden 1961) is one of the most simple: 
particles are added one after another to a growing cluster with the prescription that 
each new particle sticks on any point of the surface of the cluster with equal probability. 
This model is generally considered as a prototype reference (see, for example, the 
proceedings of the conference on ‘Kinetics of Aggregation and Gelation’, edited by F 
Family and D P Landau (1984, Amsterdam: North-Holland) and references therein) 
with many potential applications in physics, chemistry and biology. One of its trivial 
aspects is the compact character of the resulting cluster which has a fractal dimension 
equal to the dimension of space (Eden 1961, Richardson 1973, Meakin 1983). If the 
bulk appears quite simple, the surface is of great interest. In particular, it is useful to 
know if the irreversible character of the growth induces some specific effect in the 
scaling properties of the surface compared with equilibrium models (Jasnow 1984 and 
references therein). Scaling properties of the surface of the Eden model have already 
been investigated (Petters e? al 1979, Meakin and Witten 1983, Plischke and RBcz 
1984). The most recent study concluded in an unusual scaling of the surface thickness 
in two dimensions (Plischke and R6cz 1984). 

In this paper we present a systematic study of the surface of the Eden model in a 
different geometry, particularly well adapted to finite-size scaling analysis. Moreover, 
we introduce three different versions of the model which differ only on short-range 
scale. We show that the version previously used to compute the surface thickness 
(Peters et al 1979, Plischke and Racz 1984) is the one exhibiting the largest finite-size 
corrections. In two dimensions we find that there exists a steady state for infinitely 
long strips in which the surface thickness simply grows as the square root of the width 
of the strip, as in equilibrium models (Jasnow 1984). Our results in d = 3 and d = 4 
are not inconsistent with the behaviour of equilibrium models. Moreover we find 
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different scalings with the height and the width of the strip. A short account of this 
work has been published elsewhere (Jullien and Botet 1985). 

We consider the geometry already used to study diffusion-limited aggregation 
(Jullien et a1 1984, RQcz and Vicsek 1983, Turban and Debierre 1984, Gelband and 
Strenski 1985). In two dimensions, the cluster grows on a square lattice of unit lattice 
parameter inside a strip of width 1, with periodic boundary conditions at the edge of 
the strip. The generalisation in d dimensions is straightforward: the section of the 
strip becomes a ( d  - 1)-dimensional hypercube of size 1. At the beginning, we consider 
that all sites are occupied up to height z = 0. Then the particles are added one after 
another to the cluster. We have considered three different prescriptions. 

In version A, we consider all unoccupied sites adjacent to the surface with the same 
probability and we choose at random one of these sites to accept the new particle. 
This is the simplest version to be handled on a computer and this explains why it has 
been so widely studied in the past (Peters et a1 1979, Meakin 1983, Meakin and Witten 
1983, Plischke and RQcz 1984). This version has been called the ‘Eden model for 
physicists’ (Vannimenus 1984). 

In version B, we consider all open bonds, i.e. all bonds joining an occupied site 
to an unoccupied one, with the same probability, and we choose at random one of 
these bonds to receive the new particle on its empty edge site. Note that this bond 
version of the Eden model is the one originally introduced by Eden himself (Eden 1961). 

In version C, we consider all occupied sites of the surface with the same probability. 
Then we choose at random one of those sites and we add the new particle on any of 
the nearest-neighbour empty sites with equal probability. We would like to emphasise 
that this prescription is conceptually very simple: any point of the cluster has the same 
chance to grow, i.e. to accept a new particle on any of its neighbouring empty sites. 

To better show that these prescriptions are effectively different, let us consider a 
simple example in two dimensions, with 1 = 3. A particular configuration is given in 
figure 1. The new particle can reach one of the empty sites adjacent to the surface, 

1 

Figure 1. A typical configuration in d = 2 with I = 3 .  0 and x denote the occupied sites 
and the unoccupied sites adjacent to the surface, respectively. - and - - - indicate 
closed bonds and open bonds, respectively. 
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labelled 1, 2, 3 and 4 on figure 1. The probabilities of reaching these sites (given in 
table 1) are different in each version. For example, site 1 which is located on the top 
of a tiny finger has less chance of being reached when going from model A to model 
C. On the other hand, site 3, which lies in a small depression, has more chance of 
being reached. Thus one must expect a smoother surface when going from model A 
to model C and this will be confirmed by the numerical results reported below. 
However, if one trusts the general scaling theory of critical phenomena, such small 
length scale differences must not affect the scaling properties for sufficiently large sizes. 
If the amplitudes may be different, the exponents must be the same in the three versions. 

Table 1. Probability that the new particle reaches site 1 ,  2, 3 or 4, with model A, B or C 
in the case of the configuration shown in figure 1.  

Site 1 2 3 4 

1 1 I I 

I 1 3 2 

I 1 S - S 

A a a a a 
B 7 5 i i 
C 12 s 24 12 

- - 

We have calculated the thickness of the surface U by the formula: 

a2 = ( zi - Z)’/ n, 
I 

with 
z = C  z i / n s  

i 

where the sum covers the n, surface sites labelled by index i and zi denotes the height 
of site i. In model A we have also calculated U’ by 

U” = ( zir - z ’ ) ~ /  n: 

Z’ = zi , /  nl 
i’ 

where now the sum covers the nl empty sites adjacent to the surface (this definition 
of the thickness comes naturally here). In all cases, when there are some holes, their 
surface is counted in the calculation of the thickness. 

The surface thickness depends on two parameters, the width 1 of the strip and the 
total number of particles N which have been added from the beginning. We have 
conveniently replaced N by an ‘effective height’ h defined as 

h =  NI1 

so that U now depends on two independent lengths. For large 1 and h, general scaling 
arguments imply that U takes the scaling form (Family and Vicsek 1985): 

~ ( 1 ,  h)- l ” f ( h / l Y )  

with 
f (x) + constant forx+oo 
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Since the h dependence of u must become independent of 1, for 1 >> h, there exists the 
following relation between the above defined exponents: 

Y = a l p .  (3) 

Consequently, if y # 1, one has a different scaling for 1 << h, U - I " ,  and for h << 1, u - h P .  
Equation (2') traduces the fact that, for a given I ,  the system always reaches a 

steady state for h >> I ,  in which 2 becomes equal to h, and n, and U saturate to constant 
values n,( l, CO) and a( 1, a). The existence of a steady state renders the Eden model 
completely different from the exactly solvable independent column model (Weeks et 
a1 1976) where, for finite 1, the surface thickness diverges as h"2 when h -$CO, in all 
dimensions. 

In two dimensions, we have done two series of calculations to determine a and p 
separately. The first series of calculations has been done in the steady state. n, and 
u2 have been averaged over 1000 independent trials and also averaged in an extended 
portion of the steady-state regime, waiting up to h =401 for widths ranging up to 
1 = 192. For the total number of sites of the surface, we have recovered the simple result 

(4) n,( 1, CO) - 1. 

The estimated constant of proportionality is given in table 2. As expected this constant 
becomes smaller when going from model A to model C, since the surface becomes 
smoother. The results for u( 1, CO) against 1 are reported in figure 2 (on a log-log plot) 
in the three cases A, B and C. Striking differences can be seen in this figure, not only 
for the absolute value of U, which decreases from model A to model C, as expected, 
but also for the shape of the curves. While the C curve is remarkably linear, leading 
to 

a = 0.501 0.03 

the others exhibit a change of curvature which must be attributed to finite-size correc- 
tions. In case A, these effects are particularly strong: the slope decreases first, goes 
through a minimum a = 0.37 between 1 = 24 and 1 = 48 and then increases slowly. The 
differences between the three cases may also be seen directly on the typical examples 
shown in figure 3. In case A, the surface contains a great number of small holes which 
artificially increases the effective thickness. The poor convergence of model A has 
already been noticed by Meakin and Witten (1983). 

In the other series of 2d calculations we have determined u(1, h )  for h and 1 both 
tending to infinity with a constant ratio h / l =  a. In figure 4 we report results for U 

(model C) and u' (model A) plotted against 1 (on a log-log plot) with a = 3 .  Here 
also U* has been averaged over 1000 independent trials. We were able to go up to 

Table 2. Constant of proportionality between the number of surface sites n, and /d-', for 
large /, evaluated in the steady state ( h  >> /). The errors are of the order of 0.05. 

d = 2  d = 3  d = 4  
~~ 

A B C  C C 

ns/ld-' 2.91 1.63 1.30 1.15 1.10 
n : / l d - '  2.18 
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1 I I I I I 
3 6 1 2  2 *  b8 96 192 

Figure 2. Numerical two-dimensional results for the I dependence of the thickness in the 
steady state. 0,  X ,  + correspond to cases A, B, C respectively. 0 corresponds to 0’ (see 
text) in case A. 

B 

c 

Figure 3. Typical two-dimensional examples with I = 96. The figure only shows the last 
top rows, containing surface sites. 

1 = 768, so that here the largest cluster contains N = 98 204 particles. We observe the 
same differences between model A and C, as in figure 2. Here again the C curve is 
remarkably linear. However we observe that its slope is definitely different from that 
in figure 2 .  According to (2)  and (2”) this implies that y is different and greater than 
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2 4  48 96 192 304 I 6 8  
I 

Figure 4. Numerical two-dimensional results for the 1 dependence of U ( / ,  a [ )  with a =& 
0 corresponds to U’ in case A and + corresponds to case C. 

one and the slope is then directly measuring p. From the C curve we obtain: 

j3 = 0.30 * 0.03. 

Combined with the preceding result for a this gives: 

y = a / P  = 1.7k0.3. 

Note that, when comparing with the spherical geometry where the cluster grows from 
a seed, the exponent p defined in (2”) becomes the exponent relating U to the radius 
U -  R P  (in the scaling regime, the spherical geometry is recovered by letting h and 1 
tend to infinity with h/ l=constant) .  Our result for p, j3-0.30, must be compared 
with the result of Plischke and Racz (1984): p ~ 0 . 3 7 .  However these authors used 
version A and, as they noticed themselves, the slope of their curves was still decreasing 
for the largest size they could reach ( N  = 2500) and their p value is certainly overesti- 
mated. Our calculations show that the C version is better adapted to calculate the 
exponents. With model C, we have also checked numerically the scaling form (2) by 
plotting a/1”2 as a function of h l l ”  for different values of 1 (figure 5) .  A similar 
scaling form, with y f 1, has recently been proposed by Family and Vicsek (1989,  in 
a different context, and also obtained analytically by Dhar (1985) who studied an 
exactly solved related growth model (Edwards and Wilkinson 1982). Dhar found 
analytically a = 4, y = 2. The a value is in good agreement with our numerical results 
while the y value is on the verge of our error bar. More precise calculations are needed 
to really test numerically the equivalence between the models. 

In higher dimensions, we report the results obtained with model C in the steady 
state only. As in d = 2, n,  and (+’ have been averaged over 1000 independent trials 
and also averaged in an extended portion of the steady-state regime, waiting up to 
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8 
+ X  

0 

0 0.2‘ 0.02 , _ I  3.33 0.0s 0.c5 
hi !  

Figure 5. Scaling function in case C for d = 2. o/ I ” *  is plotted as a function of h /  I’ ’ for 
different values of I :  +, 48; 0, 96; 0, 192; x ,  384. 

h = 401. In three and four dimensions, we were limited to 1 = 48 and 1 = 12, respectively. 
For n,( I, CC), we have recovered the simple generalisation of the d = 2 results: 

n s ( l ,  CO) - l d - ’  ( 5 )  

which is a trivial result (as if the surface would be completely smooth). The constant 
of proportionality is given in table 2 together with the d = 2 results. The numerical 
results for U against 1 are reported in figure 6 (on a log-log plot) and in figure 7 (on 
a semi-log plot). From figure 6 we could conclude that a -- 0.20i0.05 and cy = 
0.08 * 0.06 in d = 3 and d = 4, respectively. Note that such an  interpretation would 
require larger small size corrections than in d = 2 (which is reflected by our large error 
bars). On the other hand, from figure 7, we could conclude that U would behave 
logarithmically in d = 3 and would probably saturate to a constant value in d = 4. It 
would be necessary to reach larger sizes to distinguish between the two possibilities. 
If we accept the second conclusion, the Eden model surface would behave as in several 
equilibrium models, such as the Ising model or models used to explain the roughening 
transition (Jasnow 1984, Gallavotti 1972, Francke 1980): (T would follow a square root 
behaviour in d = 2, would behave logarithmically in d = 3 and would saturate in larger 
dimensions. This possibility was suggested by Plischke and RBcz. This is also in 
agreement with the recent study by Dhar (1985). 

In conclusion, our numerical results suggest that the Eden model could share some 
similarities with equilibrium models. However, we have found that, in the strip 
geometry, the surface thickness scales differently with the width (for large height) and 
with the height (for large width). The trivial 2d square root behaviour is recovered 
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1 

Figure 6. Numerical results for the I dependence of the thickness in the steady state in 
case C shown in a log-log plot. 0, X ,  + correspond to d = 2, 3,  4, respectively. 

3 6 12 2 4  4 8  
1 

Figure 7. The same results as in figure 4 shown in a semi-log plot 
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with the width (which plays the role of a size) while another type of behaviour is 
found with the height (which plays the role of time). This property, already found in 
the random deposition model (Dhar 1985), is certainly due to the irreversible kinetic 
character of the Eden model. 
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